文章快速检索  
  高级检索
利用深层卷积神经网络实现地形辅助的多波束海底底质分类
阳凡林1,2, 朱正任1, 李家彪3, 冯成凯1, 邢喆4, 吴自银3     
1. 山东科技大学测绘科学与工程学院, 山东 青岛 266590;
2. 自然资源部海洋测绘重点实验室, 山东 青岛 266590;
3. 自然资源部第二海洋研究所, 浙江 杭州 310012;
4. 国家海洋信息中心, 天津 300171
摘要:海底底质分类对于海洋资源开发与利用、海洋科学研究等多方面具有重要意义。目前,多波束探测是实现大范围海底底质分类的有效手段之一,通常基于多波束反向散射强度提取角度响应(AR)特征及反向散射图像特征进行底质分类。由于特征来源较单一,分类器结构简单,往往分类精度不高。为此,本文提出了一种基于深层卷积神经网络(CNN)的多波束海底底质分类方法。除反向散射强度特征外,还利用地形特征,将特征向量转换为波形图,再输入卷积神经网络进行训练和分类。试验对比不同特征组合以及BP网络、支持向量机(SVM)、K近邻(KNN)、随机森林(RF)4种常规分类器,本文模型算法总体分类精度达到94.86%,Kappa系数为0.93,精度具有明显优势,效率也比较高。表明该方法有效利用两种数据类型所蕴含的海底底质信息,充分发挥卷积神经网络权值共享、高效率等特点,实现高分辨率海底底质分类,可对海底底质分类研究提供参考。
关键词多波束    反向散射图像    角度响应    底质分类    卷积神经网络    
Seafloor classification based on combined multibeam bathymetry and backscatter using deep convolution neural network
YANG Fanlin1,2, ZHU Zhengren1, LI Jiabiao3, FENG Chengkai1, XING Zhe4, WU Ziyin3     
1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China;
2. Key Laboratory of Oceanic Surveying and Mapping, Ministry of Natural Resources, Qingdao 266590, China;
3. Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
4. National Marine Data Information Center, Tianjin 300171, China
Abstract: Seafloor classification is of great significance for the development and utilization of marine resources and marine scientific research. At present, multibeam detection is one of the effective methods to achieve large-scale seafloor classification. Seafloor classification is usually based on the angular response (AR) features and backscatter image features extracted by using multibeam backscatter. Because the feature source is relatively single and classifier structure is simple, the classification accuracy is often not high. This paper proposes a seafloor classification method based on convolutional neural networks (CNN). In addition to backscatter features, bathymetry features are also used to classify. The feature vectors are converted into waveform maps, and then input to the convolutional neural network for training and classification. The experiment compares different feature combination models and four conventional classifiers: BP network, support vector machine (SVM), k-nearest neighbor (KNN), and random forest (RF). The overall classification accuracy of the experiment reaches 94.86%, the kappa coefficient up to 0.93, and it takes 1 min 25 s. The accuracy has obvious advantages and the efficiency is relatively high. This method can effectively obtain the seafloor information in two different data types, give full play to the characteristics of convolutional neural network weight sharing, high efficiency, and achieve high-resolution seafloor classification. This paper provides a reference for the seafloor classification based on multibeam.
Key words: multibeam    backscatter image    angular response    seafloor classification    convolutional neural network    

海底底质是海洋环境的重要指标,底质类型的分类和识别在海洋资源的开发利用、海洋工程、环境科学和海洋渔业等诸多领域具有重要意义。传统的海底底质探测主要通过拖曳式采样器、表层采样器、柱状采样器、重力活塞采样器、海底照相等,这些方法存在机械笨重、费时费力及深水区域采样困难等缺点,因此,利用声学遥感进行海底底质分类得到了广泛关注[1-3]。多波束测深系统(multibeam echo sounder, MBES)可同时采集测深和反向散射强度数据(backscatter strength, BS),具有覆盖面积广、分辨率高等优点,可以快速、准确地获取调查区域内底质的分布情况[4-5]

国内外学者对多波束海底底质分类进行了广泛研究。文献[6]提取反向散射图像分形维数、光谱长度等特征作为K-means聚类参数进行分类;文献[7]通过反向散射图像的纹理和振幅特征,使用贝叶斯分类器进行分类;文献[8]通过提取反向散射图像的均值、标准差等特征,构建单元特征向量,利用遗传小波神经网络进行海底底质分类。由于多波束反向散射图像具有强噪声特点,很难将图像处理到比较理想的水平,特别是影响显著的入射角效应。为了避开此影响,文献[9]利用角度响应(angle response, AR)曲线进行无监督聚类,实现了海底底质的划分;文献[10]通过提取角度响应曲线特征,结合反向散射图像纹理使用随机森林算法进行分类;文献[11]通过提取角度响应曲线的一阶导数、二阶导数和曲率等特征进行分类;文献[12]利用角度响应曲线构建其三维概率密度进行分类。上述方法主要利用多波束反向散射强度形成的图像及其提取的角度响应曲线进行分类,分类数据类型单一,反向散射强度数据质量直接决定了分类的精度。除反向散射强度外,多波束测深数据具有较高的精度,研究表明,海底地形变化与海底底质的空间分布存在密切关系[13-14]。因此,本文在反向散射强度的基础上加入了地形数据辅助进行分类,改善了分类数据类型单一的问题,提高了分类精度。

决定多波束底质分类精度和效果有两方面因素,除需要有效特征外,还取决于优秀的分类器。文献[15-18]提出深度学习的概念,阐述了深层神经网络特征学习的优越性并提出了“逐层预训练”的方法,从此掀起了深度学习的热潮。卷积神经网络(convolutional neural networks, CNN)是深层神经网络的一种,因其具有权值共享,适用性强等优点,广泛应用于手写数字识别、地震波波形检测与分类、影像匹配和高光谱遥感图像分类等领域[19-22]。目前,关于人工神经网络应用于海底底质分类已有相关研究[14, 23],但利用CNN进行多波束底质分类的研究较少,文献[24-25]将反向散射图像分割后利用CNN进行分类,取得了较高的分类精度,但分类结果图的空间分辨率降低。为此,本文将以像元为单元,将一维特征向量转换为二维波形图作为CNN的输入层,在保证全特征、高空间分辨率的同时,实现对海底底质的快速、高精度识别。

1 多类型特征提取

特征提取是进行训练和分类的重要前提,海底底质分类特征按其数据类型划分主要包括:反向散射强度特征和海底地形特征。

1.1 反向散射强度特征

反向散射强度是海底底质分类的主要数据类型,本文提取反向散射图像(灰度、角二阶矩、能量、对比度及相关性)5个及AR曲线(均值、斜率、峰度、偏度)4个,共9个特征用于底质分类。

1.1.1 反向散射图像特征

反向散射图像除灰度这个基本统计特征外,还蕴含丰富的纹理信息。纹理信息反映了图像表面信息及其与周围环境的关系,更好地兼顾了图像的宏观结构和微观结构[26-27]。灰度共生矩阵(gray level co-occurrence matrix, GLCM)是描述和分析图像纹理的一种有效手段,本文利用灰度共生矩阵法,选取了最具有代表性的4个纹理特征参数:角二阶矩(angular second moment, ASM)、能量(energy, E)、对比度(contrast, CON)、相关性(correlation, COR)。具体计算方法参见文献[28-29]。

1.1.2 角度响应曲线特征

角度响应(AR)曲线是反向散射强度随入射角变化的曲线,与底质的属性有关,提取AR特征能实现海底底质分类。

图 1所示,在常见底质下,入射角θ在0°~15°时,换能器受镜面反射的影响,接收的反向散射强度较大,称为D1区,即中央异常区;入射角θ在15°~65°时,换能器主要接收散射模式中的后向散射部分,成为D2区,即漫反射区;入射角θ超过65°时,称为D3区,即高入射区[30-31]。基于上述AR曲线的分段理论,提取数据质量较好的D2区,将其斜率绝对值|K2|及均值Mean2作为AR曲线的特征参数,其中取绝对值的目的是为了左舷和右舷斜率符号统一。

图 1 AR曲线分区 Fig. 1 Schematic depiction of AR curve division

在同一底质类型下,多波束每ping(一个发射接收周期)数据对应的AR曲线(图 2),其整体变化趋势也可应用于海底底质分类。峰度(kurtosis)和偏度(skewness)是统计学中常用的统计量,可以描述和分析数据的分布形态,选取峰度和偏度作为AR曲线的特征参数,具体计算方法见文献[32-33]。

图 2 1 ping测量数据对应的AR曲线 Fig. 2 Schematic depiction of AR curve of one ping data

AR曲线特征提取具体步骤如下。

(1) 以ping为单位,分别提取AR曲线左舷和右舷D2区的数据,计算均值Mean2和斜率绝对值|K2|,将其作为左舷和右舷所有采样点的AR特征值。

(2) 重复步骤(1),直至测区所有条带的采样点都获取其对应的AR特征值。

(3) 在地理坐标约束下,将测区内所有采样点的AR特征值进行重采样(格网化),得到AR曲线均值和斜率绝对值特征图。

(4) 以ping为单位,计算整体AR曲线的峰度和偏度,将其作为该ping内所有采样点的AR特征值。

(5) 重复步骤(4),直至测区所有条带的采样点都获取其对应的AR特征值。

(6) 在地理坐标约束下,将测区内所有采样点的AR特征值进行重采样(格网化),得到AR曲线峰度和偏度特征图。

1.2 海底地形特征

多波束系统以测深为主,能获取高质量的海底地形,而海底地形信息往往与底质的空间分布息息相关。本文利用测深数据,提取了水深均值(mean)、坡度(slope)、地表曲率(curvature)和粗糙度(roughness)4个地形特征应用于海底底质分类。具体计算方法参见文献[34]。

2 卷积神经网络底质分类模型

卷积神经网络(CNN)多波束海底底质分类流程如图 3所示。首先,将原始数据进行数据解析及各项预处理;然后,进行特征提取构建特征向量,将特征向量转换为波形图;最后,建立CNN模型进行迭代训练,直至满足期望误差,输出分类结果,完成精度评价。其中,特征向量到波形图的转换是利用CNN模型进行高空间分辨率海底底质分类的关键。

图 3 CNN底质分类流程 Fig. 3 Process for seafloor classification using CNN

2.1 卷积神经网络构成

随着大数据时代的到来,深度学习得到快速发展,CNN是一种基于深度学习的神经网络,因其具有局部连接、权值共享及池化操作等特性,可以有效降低网络复杂度,减少训练参数,且易于优化和训练,已成为当前图像分类与识别领域的研究热点[35-36]

CNN结构一般由输入输出层、卷积层(S)、池化层(C)和全连接层(F)等组成。卷积层包含若干组可以学习的卷积核,这些参数是CNN训练的核心。当前层的卷积核对上一层的特征图做卷积运算,然后通过一个激活函数(activation function)得到新的特征图

(1)
(2)

式中,ujl为卷积层l第j个通道的净激活(net activation);xjl是卷积层lj个通道的输出;f(·)称为激活函数;Mj表示用于计算ujl的输入特征图子集;kijl是卷积核矩阵;bjl是对卷积后特征图的偏置;“*”代表卷积运算。

池化层常与卷积层交替出现,池化层的主要作用是降采样,减少数据量。常见的池化模式包含“最大池化(max poling)”和“平均池化(mean poling)”两种。经过卷积层和池化层交替操作后,全连接层将得到的二维特征图拼接成一维特征,对其进行训练和分类。

CNN对参数的学习训练是通过梯度反向传播算法实现的,其主要优化参数包括卷积核k, 全连接层网络权重w和各层偏置b。网络训练过程中,输入样本标记和实际输出样本标记会有一定误差,误差在梯度下降算法中逐层传播,逐层更新网络参数。为保证代价函数尽可能小,需要不断反向误差传播,更新每一层的参数。CNN基本算法原理参见文献[18, 20]。

2.2 特征向量到特征曲线图的转换

以像元为单位构成的特征向量是海底底质分类的基本单元。如图 4所示,将提取的特征按层结构存储,本文共有13层,包含反向散射强度特征9层、海底地形特征4层。逐层进行归一化,提取每层相同位置的特征数据,构成特征向量。其中,归一化的目的是防止特征向量中元素值差别过大,导致特征向量向特征曲线图转换过程中信息被忽略。

图 4 特征向量 Fig. 4 Schematic depiction of feature vector

针对CNN网络输入层的特点,本文将数据分类与图像分类相结合,以特征序号为横坐标,特征值大小为纵坐标,绘制特征向量的波形图,将其输入CNN模型中进行训练和分类(图 5)。该方法将单个样本点所包含的全部特征信息(特征向量)及其空间信息(各特征变量之间的相对位置关系)通过波形变化的形式展现出来,即每张波形图代表某像元的特征信息+空间信息,通过CNN模型对波形图的深度学习来实现海底底质分类。

图 5 特征向量到波形图的转换 Fig. 5 Schematic depiction of conversion from feature vector to waveform

2.3 模型分类精度评价

海底底质分类模型的精度评价是在分类结束后,根据海底底质的真实类别标记,统计分类结果,以评估所采用分类算法的准确性。本文将CNN模型分类结果与海底底质的真实类别标记进行对比得到分类混淆矩阵(confusion matrix, CM),据此计算得到总分类精度(overall accuracy, OA)、使用者精度(user accuracy, UA)、生产者精度(producer accuracy, PA)和Kappa系数(Kappa coefficient)4个指标,对其进行精度评价,具体计算方法见文献[37]。

3 试验与分析 3.1 试验数据

本文数据来源于2012年的浅水调查会议资料,该测量数据满足国际海道测量规范(IHO SP-44 Ed 5)特级精度要求。试验数据采集于2011年3月8日,在新西兰首都惠灵顿附近海域使用Kongsberg-EM2040多波束测深系统测得的部分数据作为研究对象(图 6(a))。该次试验多波束测深系统(已检校)的工作频率为300kHz,波束宽度为1°×1°,测区水深14~25m,测线布设为西北和东北方向共16条测线。首先,将原始数据进行解析、预处理(处理软件:CARIS HIPS & SIPS10.0),由于测区条带重叠区域较多,测量点密度达到70~90points/m2,在地理坐标下进行重采样(分辨率为0.5m),最后,进行灰度量化,形成多波束反向散射图像(图 6(b))。

图 6 惠灵顿调查区域多波束反向散射图像及底质采样 Fig. 6 Schematic depiction of multibeam backscatter image and seafloor sampling in Wellington survey area

调查区域在惠灵顿港口附近,根据现有资料[38],码头及其周围海域海底底质类型主要为基岩和砂,港口外的南部海岸主要为砂和裸露的珊瑚礁。结合本次试验区域26个现场底质取样资料及水下摄像机提供的高清影像资料,研究区域底质分为3类,即基岩、砂及泥。另外,调查区域还有一艘军舰残骸,该舰为HMNZS Wellington,所处位置为(41°21′10.8″S, 174°46′48″E)。为验证算法的有效性、适用性,及后续海底目标自动检测与识别工作的进行,本次试验将沉舰也纳为分类对象。试验提取采样点及其附近相对应的1150组数据,其中沉舰240组、基岩270组、砂340组、泥300组。(随机选取800组数据作为训练样本,剩余350组数据为测试样本)。

3.2 特征提取

为便于说明,选取调查区域的一部分作为试验区域(图 6(b)中虚线方框)进行本文算法介绍。利用测区内的反向散射强度和测深数据进行特征提取,包含反向散射图像纹理特征(角二阶矩、能量、对比度和相关性)、角度响应曲线特征(均值、斜率、峰度和偏度)及海底地形特征(水深均值、坡度、地表曲率和粗糙度)。为便于后续特征向量的提取,格网大小均为0.5m×0.5m,提取结果如图 7图 8图 9所示。

图 7 多波束反向散射图像纹理特征 Fig. 7 Texture features of multibeam backscatter image

图 8 角度响应曲线特征 Fig. 8 Features of angular response curve

图 9 多波束海底地形特征 Fig. 9 Seabed terrain features from multibeam bathymetric data

3.3 分类与讨论

将3.2节中得到的特征进行逐层归一化,提取特征向量转换为波形图,如图 10所示,分别展示了沉舰、基岩、砂和泥的4种波形图(特征组合:反向散射图像特征+AR特征+海底地形特征),本次试验波形图大小为28×28像素。与传统的CNN输入层相比,本文的波形图包含了不同特征之间的空间信息(相对位置关系),更加直观、清晰地展示了不同类别之间的差异,更易于模型的分类与识别;波形图以像元为单位,在分类结果图的空间分辨率上更占优势。

图 10 沉舰及各自然底质波形 Fig. 10 The waveform map of wreck and seafloor types

建立深层CNN模型,输入训练样本800组,输出目标向量为T,表示3种自然底质类型和1种人工目标(沉舰),C1卷积层包含6个卷积核,卷积核大小为3×3;S1池化层选取最大池化模式,池化窗口为2×2;C2卷积层包含12个卷积核,卷积核大小为3×3;S2池化层选取最大池化模式,池化窗口为2×2;全连接层数为1,学习率为0.01;每次批处理特征图 5张,所有特征图循环迭代5次,共800次(具体CNN参数的选择和性能对比可参考文献[18])。反向散射图像的纹理特征是在原始反向散射图像(灰度)上提取的,海底坡度、曲率、粗糙度等特征是在水深均值(海底DEM)基础上提取的,上述非原始特征受提取精度和方法的影响,与原始特征(原始反向散射图像+水深均值+AR特征)的分类效果可能不同,需要定量评估。另外,也需要分析CNN模型本身对原始信息的特征提取能力以及加入海底地形特征对分类结果的影响,因此,试验选取了5种不同的特征组合进行分类,分别是:①反向散射图像特征;②AR特征;③反向散射图像特征+AR特征;④原始反向散射图像+水深均值+AR特征;⑤反向散射图像特征+AR特征+海底地形特征。通过上述5种不同的组合模式可以验证本文所提取的不同特征以及加入非原始特征辅助分类的有效性,分类结果如图 11所示,分类精度见表 1

图 11 不同特征组合的海底底质分类结果 Fig. 11 Result maps of seafloor classification by different feature combination models

表 1 不同特征组合模型分类精度 Tab. 1 Classification accuracy of different feature combination models
特征组合 分类器 类别 沉舰 基岩 用户精度
/(%)
总精度
/(%)
Kappa
系数
反向散射图
像特征
CNN 沉舰 38 0 4 6 79.17 66.86 0.54
基岩 18 106 24 18 63.86
6 4 64 32 60.38
0 0 4 26 86.67
生产者精度(%) 61.29 96.36 66.67 31.71 -
AR特征 CNN 沉舰 46 2 0 2 92.00 82.29 0.76
基岩 26 82 0 4 73.21
6 10 74 10 74.00
0 0 2 86 97.73
生产者精度(%) 58.97 87.23 97.37 84.31 -
反向散射图像
特征+AR特征
CNN 沉舰 62 4 0 0 93.94 88.86 0.82
基岩 2 96 0 2 96.00
6 4 102 20 77.27
0 0 1 51 98.08
生产者精度(%) 88.57 92.31 99.02 69.86 -
原始反向散射
图像+水深均
值+AR特征
CNN 沉舰 44 0 0 4 91.66 90.00 0.86
基岩 2 78 4 0 92.85
0 3 107 14 86.29
0 0 8 86 91.49
生产者精度(%) 95.65 96.30 89.92 82.69 -
反向散射图像
特征+AR特征+
海底地形特征
CNN 沉舰 60 2 0 0 96.77 94.86 0.93
基岩 4 104 0 0 96.30
0 0 90 10 90.00
0 2 0 78 97.50
生产者精度(%) 93.75 96.30 100 88.64 -

结合图 11表 1,可以看出,只利用反向散射图像特征进行分类,不同底质边缘轮廓清晰,但整体连续性较差,总分类精度和Kappa系数分别只有66.86%和0.54;只利用AR特征进行分类,底质连续性较好,但存在“条纹”现象,总分类精度和Kappa系数分别为82.29%和0.76;利用反向散射图像和AR组合特征进行分类有效结合了两者的优势,在保证底质连续的情况下,消除了“条纹”现象,取得较好的分类结果(总分类精度88.86%,Kappa系数为0.82);在此基础上加入海底地形特征后,使得与地形变化相关的类别,如沉舰错分为其他底质的情况减少,分类精度由88.57%提升到93.75%,总分类精度和Kappa系数也分别由88.86%、0.82提升到94.86%、0.93,验证了加入地形特征辅助分类的有效性。为了分析非原始特征对分类结果的影响,利用原始反向散射图像、水深均值及AR特征组合进行分类,如图 11(d)所示,取得了较好的分类结果(总分类精度90.00%,Kappa系数为0.86),但整体低于本文模型算法的分类效果(总分类精度94.86%,Kappa系数为0.93)。

为验证本文CNN模型的优越性,利用BP网络、支持向量机(support vector machine, SVM)、K近邻(K-nearest neighbor,KNN)、随机森林(random forest, RF)4种经典分类器基于同样的特征组合(反向散射图像特征+AR特征+海底地形特征)对同样的数据进行分类。BP神经网络分类时,输入层设置为13,隐含层设置为15,输出层设置为4,学习率设置为0.1;SVM分类时,核函数为径向基函数(radial basis function, RBF),网格搜索法寻找最优参数(惩罚因子c:0.7;核函数参数g:4);KNN分类时,k设置为5;RF分类时,树最大深度取100,分类结果见图 12表 2。BP神经网络作为传统的神经网络分类器,其网形结构复杂,训练参数较多,但总体分类精度不高(总体分类精度为85.14%,Kappa系数为0.80);SVM作为常用的监督分类方法,算法简单、稳健性较好,但其泛化能力较弱,不适合大样本的数据训练,易出现过拟合现象,总体分类精度为88.85%,Kappa系数为0.85;KNN作为一种懒惰学习算法,模型简单,易于理解,但其依赖于训练样本质量及参数k的选取,总体分类精度只有84.57%,Kappa系数为0.79;RF作为一种决策树的集成算法,泛化能力较强,分类精度较高(总体分类精度为90.00%,Kappa系数为0.87),但整体仍低于本文CNN模型得到的结果(总体分类精度94.86%,Kappa系数为0.93),体现了深度学习算法在海底底质分类中的优势。

图 12 不同分类器的海底底质分类结果 Fig. 12 Result maps of seafloor classification with different classifiers

表 2 不同分类器分类精度 Tab. 2 Classification accuracy of different classifiers
分类器 类别 沉舰 基岩 用户精度/(%) 总精度/(%) Kappa系数
BP神经网络 沉舰 60 8 0 2 85.71 85.14 0.80
基岩 10 72 0 0 87.80
0 0 102 32 76.12
0 0 0 64 100
生产者精度/(%) 85.71 90.00 100 65.31 -
SVM 沉舰 57 0 0 4 93.4 88.85 0.85
基岩 4 87 0 11 85.29
10 0 97 2 88.99
0 0 8 70 89.74
生产者精度/(%) 80.28 100 92.38 80.45 -
KNN 沉舰 62 8 0 0 88.57 84.57 0.79
基岩 6 82 0 12 82.00
4 0 88 8 88.00
0 10 6 64 80.00
生产者精度/(%) 86.11 82.00 93.62 76.19 -
RF 沉舰 70 8 0 0 89.74 90.00 0.87
基岩 6 84 2 10 82.35
0 4 92 0 95.83
0 5 0 69 93.24
生产者精度/(%) 92.11 83.17 97.87 87.34 -

图 13为CNN与BP网络训练集迭代次数与误差精度的关系(试验采用的处理器:Intel Core i5 4210H,内存:4GB)。可以看出,CNN在收敛速度和性能上均优于BP网络,当CNN训练迭代到603步时,收敛到期望误差0.1;而BP网络计算至1593步时才达到期望误差,耗时2min 28s,这是由于传统人工神经网络(如BP网络)输入层的每个神经元都要连接到隐含层,对全局进行感知,计算和收敛速度较慢且容易陷入局部极值。除此之外,SVM作为二分类器,算法简单,运行效率高,但当执行多分类任务时,需要训练多个分类器,增加计算量,试验耗时1min 46s;KNN结构简单,运算较快,试验耗时58s,但其整体分类精度较低;RF作为集成学习算法,可以并行训练,提高运行效率,试验耗时1min 12s;本文CNN模型算法可以实现局部感知、权值共享,试验耗时1min 25s,分类效率高于BP网络和SVM,略低于KNN和RF,但整体精度大于上述4种分类器。

图 13 CNN与BP网络训练集迭代次数与训练误差的关系 Fig. 13 The relationship between iteration times and training error of CNN and BP network training sets

利用反向散射与海底地形特征组合采用CNN模型对整个调查区域进行分类,结果如图 14所示。可以看出,不同底质之间界限清晰,过渡自然,结合测区已有海底底质资料[38](图 6(b)),分类结果符合真实的海底底质变化情况,验证了本文模型算法对多波束海底底质分类的适用性。

图 14 整个测区海底底质分类结果 Fig. 14 Result maps of seafloor classification in the whole survey area

4 结论

多波束海底底质分类是近几十年来一直延续的研究热点。针对常规分类手段中数据类型单一,分类器的分类精度和效率较低等问题,本文在传统多波束分类数据类型(反向散射强度数据)的基础上加入了测深数据进行辅助分类,并通过将特征向量转换成波形图的方式,利用CNN网络进行训练和分类,最终以94.86%的整体分类精度区分出基岩、砂和泥等不同自然底质,且准确划分出沉舰目标的轮廓和位置。试验结果表明,根据测深数据所提取的海底地形特征与底质的空间分布具有很强的相关性,在反向散射强度信息的基础上,组合测深信息进行分类,可有效提高分类精度。基于深度学习的CNN网络,能够对不同底质和目标的波形图(特征信息+空间信息)进行局部感知,充分发挥其权值共享的优势,兼顾分类精度的同时,提高了分类效率。利用深层卷积神经网络,组合多波束测深和反向散射特征进行海底底质分类,具有特征提取和分类模型的优势,提高了分类精度和效率,对多波束海底底质分类具有参考意义。


参考文献
[1]
何林帮. 基于多波束和浅剖的海底浅表层沉积物分类关键问题研究[J]. 测绘学报, 2016, 45(12): 1498-1512.
HE Linbang. Research on key issues of sediment classification for seabed and sub-bottom based on multi-beam and sub-bottom profile echo intensity[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(12): 1498-1512. DOI:10.11947/j.AGCS.2016.20160466
[2]
HERKVL K, PETERSON A, PAEKIVI S. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows[J]. Estuarine, Coastal and Shelf Science, 2017, 192: 57-71. DOI:10.1016/j.ecss.2017.04.026
[3]
唐秋华, 纪雪, 丁继胜, 等. 多波束声学底质分类研究进展与展望[J]. 海洋科学进展, 2019, 37(1): 1-10.
TANG Qiuhua, JI Xue, DING Jisheng, et al. Research progress and prospect of acoustic seabed classification using multibeam echo sounder[J]. Advances in Marine Science, 2019, 37(1): 1-10.
[4]
ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. A new method of automatic SVP optimization based on MOV algorithm[J]. Marine Geodesy, 2015, 38(3): 225-240. DOI:10.1080/01490419.2015.1006798
[5]
ZHOU Jieqiong, WU Ziyin, JIN Xianglong, et al. Observations and analysis of giant sand wave fields on the Taiwan Banks, northern South China Sea[J]. Marine Geology, 2018, 406: 132-141. DOI:10.1016/j.margeo.2018.09.015
[6]
TEGOWSKI J. Acoustical classification of the bottom sediments in the southern Baltic Sea[J]. Quaternary International, 2005, 130(1): 153-161. DOI:10.1016/j.quaint.2004.04.038
[7]
PRESTON J. Automated acoustic seabed classification of multibeam images of Stanton Banks[J]. Applied Acoustics, 2009, 70(10): 1277-1287. DOI:10.1016/j.apacoust.2008.07.011
[8]
熊明宽, 吴自银, 李守军, 等. 基于遗传小波神经网络的海底声学底质识别分类[J]. 海洋学报, 2014, 36(5): 90-97.
XIONG Mingkuan, WU Ziyin, LI Shoujun, et al. Wavelet neural network identification and classification of sediment seabed sonar images based on genetic algorithms[J]. Acta Oceanologica Sinica, 2014, 36(5): 90-97. DOI:10.3969/j.issn.0253-4193.2014.05.010
[9]
HAMILTON L J, PARNUM I. Acoustic seabed segmentation from direct statistical clustering of entire multibeam sonar backscatter curves[J]. Continental Shelf Research, 2011, 31(2): 138-148. DOI:10.1016/j.csr.2010.12.002
[10]
HASAN R C, IERODIACONOU D, LAURENSON L, et al. Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping[J]. PLoS One, 2014, 9(5): e97339. DOI:10.1371/journal.pone.0097339
[11]
MONTEYS X, HUNG P, SCOTT G, et al. The use of multibeam backscatter angular response for marine sediment characterisation by comparison with shallow electromagnetic conductivity[J]. Applied Acoustics, 2016, 112: 181-191. DOI:10.1016/j.apacoust.2016.05.010
[12]
金绍华, 李家彪, 吴自银, 等. 海底底质分类反向散射强度三维概率密度法[J]. 测绘学报, 2019, 48(1): 124-131.
JIN Shaohua, LI Jiabiao, WU Ziyin, et al. 3D histogram of backscatter strength for seafloor substrates classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 124-131. DOI:10.11947/j.AGCS.2019.20170631
[13]
吕海龙, 杜德文, 石学法, 等. 基于测深数据的胶州湾底质类型估计方法[J]. 海洋科学进展, 2004, 22(3): 328-333.
LV Hailong, DU Dewen, SHI Xuefa, et al. Estimation method of bottom sediment type in the Jiaozhou Bay based on the bathymetric data[J]. Advances in Marine Science, 2004, 22(3): 328-333. DOI:10.3969/j.issn.1671-6647.2004.03.010
[14]
MARSH I, BROWN C. Neural network classification of multibeam backscatter and bathymetry data from Stanton Bank (Area IV)[J]. Applied Acoustics, 2009, 70(10): 1269-1276. DOI:10.1016/j.apacoust.2008.07.012
[15]
RANZATO M A, POULTNEY C, CHOPRA S, et al. Efficient learning of sparse representations with an energy-based model[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Kitakyushu, Japan: MIT Press, 2006: 1137-1144.
[16]
BENGIO Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127. DOI:10.1561/2200000006
[17]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. DOI:10.1038/nature14539
[18]
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
ZHOU Feiyan, JIN Linpeng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.
[19]
王华斌, 韩旻, 王光辉, 等. 遥感影像要素提取的可变结构卷积神经网络方法[J]. 测绘学报, 2019, 48(5): 583-596.
WANG Huabin, HAN Min, WANG Guanghui, et al. Surface features extraction in remote sensing images based on architecture-variant CNN[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(5): 583-596. DOI:10.11947/j.AGCS.2019.20180122
[20]
FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90-100. DOI:10.11947/j.JGGS.2019.0210
[21]
SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489. DOI:10.1038/nature16961
[22]
余东行, 郭海涛, 张保明, 等. 级联卷积神经网络的遥感影像飞机目标检测[J]. 测绘学报, 2019, 48(8): 1046-1058.
YU Donghang, GUO Haitao, ZHANG Baoming, et al. Aircraft detection in remote sensing images using cascade convolutional neural networks[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(8): 1046-1058. DOI:10.11947/j.AGCS.2019.20180471
[23]
唐秋华, 刘保华, 陈永奇, 等. 结合遗传算法的LVQ神经网络在声学底质分类中的应用[J]. 地球物理学报, 2007, 50(1): 313-319.
TANG Qiuhua, LIU Baohua, CHEN Yongqi, et al. Application of LVQ neural network combined with the genetic algorithm in acoustic seafloor classification[J]. Chinese Journal of Geophysics, 2007, 50(1): 313-319. DOI:10.3321/j.issn:0001-5733.2007.01.039
[24]
纪雪.基于多波束数据的海底底质及地形复杂度分类研究[D].青岛: 国家海洋局第一海洋研究所, 2017.
JI Xue. Classification of seabed sediment and terrain complexity based on multibeam data[D]. Qingdao: The First Institute of Oceanography, 2017.
[25]
付楠.基于声呐图像特征的海底底质类型分类方法研究[D].哈尔滨: 哈尔滨工程大学, 2019.
FU Nan. Research on classification method of submarine substrate type based on characteristics of sonar image[D]. Harbin: Harbin Engineering University, 2019.
[26]
HARALICK R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786-804. DOI:10.1109/PROC.1979.11328
[27]
SUN Wanxiao, KOLAPPAL A Z, GONG Peng. Two computation methods for detecting anisotropy in image texture[J]. Geographic Information Sciences, 2005, 11(2): 87-96.
[28]
郑淑丹, 郑江华, 石明辉, 等. 基于分形和灰度共生矩阵纹理特征的种植型药用植物遥感分类[J]. 遥感学报, 2014, 18(4): 868-886.
ZHENG Shudan, ZHENG Jianghua, SHI Minghui, et al. Classification of cultivated Chinese medicinal plants based on fractal theory and gray level co-occurrence matrix textures[J]. Journal of Remote Sensing, 2014, 18(4): 868-886.
[29]
郭德军, 宋蛰存. 基于灰度共生矩阵的纹理图像分类研究[J]. 林业机械与木工设备, 2005, 33(7): 21-23.
GUO Dejun, SONG Zhecun. A study on texture image classifying based on gray-level co-occurrence matrix[J]. Forestry Machinery & Woodworking Equipment, 2005, 33(7): 21-23. DOI:10.3969/j.issn.2095-2953.2005.07.008
[30]
DÍAZ J V M. Analysis of multibeam sonar data for the characterization of seafloor habitats[D]. New Brunswick: University of New Brunswick, 2000.
[31]
ZHAO Jianhu, YAN Jun, ZHANG Hongmei, et al. Two self-adaptive methods of improving multibeam backscatter image quality by removing angular response effect[J]. Journal of Marine Science and Technology, 2017, 22(2): 288-300. DOI:10.1007/s00773-016-0410-1
[32]
MARDIA K V. Measures of multivariate skewness and kurtosis with applications[J]. Biometrika, 1970, 57(3): 519-530. DOI:10.1093/biomet/57.3.519
[33]
GROENEVELD R A, MEEDEN G. Measuring skewness and kurtosis[J]. Journal of the Royal Statistical Society:Series D (The Statistician), 1984, 33(4): 391-399.
[34]
刘学军, 龚健雅, 周启鸣, 等. 基于DEM坡度坡向算法精度的分析研究[J]. 测绘学报, 2004, 33(3): 258-263.
LIU Xuejun, GONG Jianya, ZHOU Qiming, et al. A study of accuracy and algorithms for calculating slope and aspect based on grid digital elevation model (DEM)[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(3): 258-263. DOI:10.3321/j.issn:1001-1595.2004.03.014
[35]
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. DOI:10.1126/science.1127647
[36]
KIRANYAZ S, INCE T, GABBOUJ M. Real-time patient-specific ECG classification by 1D convolutional neural networks[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(3): 664-675. DOI:10.1109/TBME.2015.2468589
[37]
CONGALTON R G. A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment, 1991, 37(1): 35-46. DOI:10.1016/0034-4257(91)90048-B
[38]
LEWIS K B. A reversal of throw and change of trend on the Wellington fault in Wellington Harbour[J]. New Zealand Journal of Geology and Geophysics, 1989, 32(2): 293-298. DOI:10.1080/00288306.1989.10427590
http://dx.doi.org/10.11947/j.AGCS.2021.20200065
中国科学技术协会主管、中国测绘地理信息学会主办。
0

文章信息

阳凡林,朱正任,李家彪,冯成凯,邢喆,吴自银
YANG Fanlin, ZHU Zhengren, LI Jiabiao, FENG Chengkai, XING Zhe, WU Ziyin
利用深层卷积神经网络实现地形辅助的多波束海底底质分类
Seafloor classification based on combined multibeam bathymetry and backscatter using deep convolution neural network
测绘学报,2021,50(1):71-84
Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 71-84
http://dx.doi.org/10.11947/j.AGCS.2021.20200065

文章历史

收稿日期:2020-02-25
修回日期:2020-11-15

相关文章

工作空间